We help you see what others miss.

WHOLE EXOME (DNA)

WHOLE TRANSCRIPTOME (RNA)

TUMOR-NORMAL

RNA-based fusion detection for certain cancers and patients is recommended by ASCO^{®1} provisional clinical opinions and suggested by NCCN Guidelines[®].²

Optimized RNA fusion detection

- 15%–30% more fusions detected than DNA^{3,4}
- Deeper coverage with 200M total reads⁵

Personalized Tumor-Normal approach

- Eliminates false positives attributable to germline
 - 25%-30% fewer false positives than Tumor-Only testing⁵

Gold standard TMB detection*

- Exome-wide TMB provides greater accuracy than panel-based testing*
- 21%-44% of patients misclassified as TMB-high with Tumor-Only⁶

High accuracy with >99% sensitivity5** and >99% specificity5

 $^{*} according \ to \ Friends \ of \ Cancer \ Research^{7,8} \quad ^{**} aggregate \ sensitivity \ across \ all \ variant \ types$

Discover advanced therapy selection testing at www.personalis.com/products/next-dx/

Easy-to-interpret clinical report

Patient: John Doe Report Released: 8/16/23 11:25:10 Accession Number: NYS1234 DOB: 01/01/01 MRN: 12345678

Personalis NeXT Dx Report Tumor + Matched Normal Analysis

Ordering Clinician

Referring Physician: Personalis Pathologist: Rosalind Franklin Institution: New York State

Specimen Patient Accession #: NYS1234

Specimen ID: SPEC-123

Specimen ID: SPEC-123 Specimen Type: FFPE Collected: 7/27/23 Received: 8/2/23 Purity: 75%¹ Limiting Specimen Conditions: None Normal Specimen Type: Blood Collected: 7/28/23 Received: 8/2/23

Name: John Doe DOB: 01/01/01 Gender: M MRN: 12345678
Diagnosis: Colon Adenocarcinoma
Primary Tumor Site: Colon

GENOMIC ALTERATIONS SUMMARY

Actionable variants, approved therapies Detected Alterations with Clinical Relevance Drugs Associated with Sensitivity -Patient's Tumor Type Drugs Associated with Resistance -Patient's Tumor Type Drugs Associated with Sensitivity -Other Tumor Types Alteration Clinical Trials Allele Fraction Origin olaparib, rucaparib, talazoparib, niraparib BRCA2 N1784fs c.5351delA None Yes 35.6% Sermline KRAS G12D c.35G>A None panitumumab. None Yes 13 20% Somatic PIK3CA E545K None None alpelisib + fulvestrant Yes 7.70% Somatic c.1633G>A

*BRCA2 N1784fs: this gene is associated with homologous recombination repair (HRR)

Incidental germline findings

Germline Altera	ations ³		
Gene	Alteration	Clinical Significance	Notes
BRCA2	N1784fs c.5351delA	Pathogenic	Referral to a cancer genetics provider for genetic counseling and confirmatory testing is recommended.

Other Biomarkers Tested						
Biomarker	Result	Drugs Associated with Sensitivity -Patient's Tumor Type	Drugs Associated with Resistance -Patient's Tumor Type	Drugs Associated with Sensitivity - Other Tumor Types	Clinical Trials	
Microsatellite instability (MSI)	Positive, High (MSI-H)	dostarlimab, ipilimumab + nivolumab, nivolumab, pembrolizumab	None	avelumab	Yes	
Tumor mutation burden (TMB)	19.36 muts/Mb	See section IV	None	See section IV	See section IV	

Relevant negatives by tumor type

Alterations of unknown clinical significance were detected; please refer to section V for details

Clinically Relevant Biomarkers Not Detected BRAF, ERBB2, NRAS, NTRK1, RET

- men purity (tumor content) is determined through histopathology by a licensed molecular pathologist (refer to Appendix B)
- Allele Fraction refers to the fraction of the total sample wherein the variant allele was detected. This value is not adjusted for special Germline alterations are reported from select genes as incidental findings. Please see section VI Report Details for the list of genes

Personalis, Inc. | 6600 Dumbarton Circle, Fremont, California 94555 CAP# 8662734 | CLIA# 05D2053444 | CDF00343226

MSI and TMB

Clinical trial options,

variant origin

Phone: 855-373-7978

Test performance specifications

Sensitivity				
Single nucleotide variants (at mutant allele frequency ≥5%)	>99%			
Small insertions and deletions (at mutant allele frequency ≥5%)	>98%			
Copy number alterations (at ≥30% tumor content)	98%			
Gene fusions	96%			
Positive predictive value*				
Single nucleotide variants (at mutant allele frequency ≥5%)	>99%			
Small insertions and deletions (at mutant allele frequency ≥5%)	>99%			
Copy number alterations (at ≥30% tumor content)	>99%			
Gene fusions	>98%			
Additional assay specifications				
Microsatellite instability (MSI)**	>99% accuracy			
Tumor mutation burden (TMB)†	Calculated from whole exome by measuring the number of mutations per megabase (mut/Mb) is reported			
Splice variants reporting from RNA	MET exon 14 skipping mutations			
HLA typing	HLA typing results are reported using normal sample			
Type of sequencing	DNA and RNA sequencing using whole exome and transcriptome sequencing			
Typical median depth Whole exome (tumor) Boosted region (247 cancer-related genes) (tumor) Whole exome (blood or saliva as matched normal samples) Whole transcriptome (tumor)	~500X >1500X ~150X 200M total reads			
Sample types ^{††}	Tumor: FFPE Normal: blood or saliva			
Regions analyzed	Coding and relevant non-coding regions of 401 genes			
Turn around time	About 2 weeks from sample receipt			
Test requisition form required	Yes			

^{*} Positive predictive value is calculated by comparing variants detected by the NeXT Dx® Test to those detected by a validated TSO500 test.

^{**} MSI status is determined by measuring nucleotide repeats from 117 loci.

[†] TMB is reported as the number of mutations per megabase (muts/Mb) from tumor-normal analysis. Please note that there is currently no standard cut-off to define a high TMB for different tumor types.

⁺⁺ Decalcified bone is not an acceptable specimen. Additionally, specimens collected in New York State are not acceptable at this time.

NeXT Dx® reportable gene list

Single nucleotide variants, small insertions and deletions, copy number alterations, and gene fusions involving the genes below may be reported in the test.

ABCB1 [†]	CAMTA1 [†]	CSF1R [†]	EWSR1 [†]	GATA1 ⁺	LIG4	MUTYH⁺	PDGFA	PTPN11⁺	SDHA*	TMPRSS2 [†]
ABL1⁺	CBFB [†]	CSF3R [†]	EXO1	GATA2*†	LRP1B	MYC [†]	PDGFB [†]	PVRL4 [†]	SDHAF2*	TNFRSF4 [†]
AKAP9⁺	CBL [†]	CTAG2 [†]	EZH2 [†]	GEN1	MAGEA3†	MYCL	PDGFRA**	RAD21⁺	SDHB**	TNFRSF8 [†]
AKT1⁺	CCNA1	CTDNEP1	EZHIP†	GLI2 [†]	MAGEA4⁺	MYCN⁺	PDGFRB [†]	RAD50*⁺	SDHC*⁺	TNFRSF10E
AKT2⁺	CCNA2	CTLA4 [†]	FAM175A	GNA11⁺	MAML1	MYD88 [†]	PGR [†]	RAD51⁺	SDHD*†	TP53**
AKT3⁺	CCNB1	CTNNA1	FAN1	GNAQ [†]	MAP2K1⁺	MYH11⁺	PHF1 [†]	RAD51B⁺	SETBP1 [†]	TSC1*⁺
ALK*†	CCNB2	CTNNA2	FANCA [†]	GNAS [†]	MAP2K2 [†]	MYOD1⁺	PIK3CA*⁺	RAD51C**	SETD2	TSC2**
APC**	CCNB3 [†]	CTNNA3	FANCB [†]	GPNMB [†]	MAP2K4⁺	NAB2 [†]	PIK3CB [†]	RAD51D**	SF3B1 ⁺	TYRO3
APOBEC3B	CCND1 [†]	CTNNB1 [†]	FANCC [†]	H3F3A	MAP3K1⁺	NBN	PIK3CD [†]	RAD52	SHFM1	U2AF1 [†]
AR⁺	CCND2 [†]	CUX1 [†]	FANCD2†	HDAC1	MAPK1⁺	NCSTN	PIK3CG [†]	RAD54B	SHH [†]	USH2A
ARAF†	CCND3 [†]	DDR2†	FANCE [†]	HDAC2	MAPK11	NF1**	PIK3R1 [†]	RAD54L	SLX4 [†]	VEGFA [†]
AREG [†]	CCNE1 [†]	DDX3X	FANCF [†]	HEY1⁺	<i>МАРК</i> 3	NF2**	PIK3R2	RAF1⁺	SMAD4**	VEGFB [†]
ARID1A†	CCNE2	DEK [†]	FANCG [†]	HNF1A⁺	MAX*	NFE2L2 [†]	PML [†]	RARA [†]	SMARCA4 [†]	VEGFC
ARID1B	CD274 [†]	DKK1 [†]	FANCI [†]	HRAS†	MBTD1 [†]	NKX2-1 [†]	PMS1	RB1**	SMARCB1 [†]	VGLL2 [†]
ARID2	CD276 [†]	DLL3 [†]	FANCL [†]	HSP90AA1⁺	MCL1 [†]	NOTCH1 [†]	PMS2**	RBBP8	SMC1A [†]	VHL**
ASXL1 [†]	CD40 [†]	DLL4	FANCM [†]	IDH1 [†]	МСРН1	NOTCH2 [†]	POLD1*	RBM15 [†]	SMC3 [†]	WEE1⁺
ATM*†	CDH1**	DNMT3A [†]	FBXW7 ⁺	IDH2 ⁺	MDC1	NOTCH3⁺	POLD2	RECQL4	SMO [†]	WRN
ATR [†]	CDH3 [†]	DOT1L	FCER2 [†]	IGF1R⁺	MDM2 [†]	NOTCH4	POLE*†	RELA [†]	SRC [†]	WT1**
ATRX [†]	CDK1	EED	FGF2 [†]	IKBKE	MDM4 [†]	NPAP1	POLQ	RET*†	SRSF2 [†]	WWTR1⁺
AURKA†	CDK2	EGFR*†	FGF4	IKZF1 [†]	MECOM [†]	NPM1⁺	PPM1D	RFC1	SS18 [†]	XPO1 [†]
AXL^{\dagger}	CDK4**	EIF1AX	FGF19 [†]	IL2RA†	MEN1*⁺	NR4A3†	PPP2R1A	RFC2	SSBP1	XRCC1 [†]
BAP1*†	CDK6⁺	EML4 [†]	FGFR1 [†]	JAG1	MERTK	NRAS [†]	PPP2R2A	RFC3	STAG2 [†]	XRCC2
BARD1*	CDK9 [†]	EP300 [†]	FGFR2 [†]	JAK1 [†]	MET*⁺	NRG1 [†]	PRAME [†]	RFC4	STAT3 [†]	XRCC3
BCL2 [†]	CDK12	EPCAM [†]	FGFR3 [†]	JAK2 [†]	MGAM	NTRK1 [†]	PRKACA [†]	RFC5	STAT5B [†]	XRCC4
BCL6⁺	CDKN1A [†]	EPHA2	FGFR4 [†]	JAK3 [†]	MKL1 [†]	NTRK2†	PRKCA [†]	RHEB	STAT6 [†]	XRCC5
BCOR [†]	CDKN1B**	ERBB2 [†]	FH*†	KDM5C	MLH1*†	NTRK3†	PRKCB [†]	RICTOR*	STK11*†	XRCC6
BCORL1 [†]	CDKN2A*†	ERBB3†	FIGF	KDM6A⁺	MLH3	NUP214⁺	PRKCD†	ROS1 [†]	SUFU*	YAP1⁺
BCR [†]	CDKN2B [†]	ERBB4 [†]	FLCN*†	KDR [†]	MLLT3 [†]	NUTM2A [†]	PRKCE [†]	RPA1	SULT1A1 [†]	YES1 [†]
BLM	CDKN2C	ERCC1	FLT1 [†]	KEAP1	MPL [†]	OTX2	PRKCG [†]	RPA2	SUZ12†	YWHAE [†]
BRAF [†]	CEBPA**	ERCC2	FLT3 [†]	KIT*†	MRE11A*†	PALB2*†	PRKCI [†]	RPA3	SYK [†]	ZMYM3
BRCA1*†	CHEK1 [†]	ERCC3	FLT4 [†]	KLB [†]	MS4A1⁺	PARP1 [†]	PRKCQ [†]	RPA4	TEK	ZRSR2†
BRCA2*†	CHEK2*†	ERCC4	FOLR1 [†]	KMT2A⁺	MSH2*†	PARP2	PRKCZ [†]	RPN1⁺	TERT*†	
BRD4⁺	CIC†	ERCC5	FOXL2†	KMT2C	MSH3	PAX3 [†]	PRKDC	RPTOR	TET2†	
BRIP1*†	CREBBP⁺	ERCC6	FOXO1 [†]	KMT2D	MSH6*⁺	PBRM1	PSCA [†]	RTEL1*	TFE3†	
BTK [†]	CRKL [†]	ESR1 [†]	FRK	KRAS†	MSLN [†]	PCNA	PTCH1*⁺	RUNX1*†	TGFBR1 [†]	
C11orf30	CRLF2 [†]	ESR2 [†]	FUS†	LAG3†	MST1R	PDCD1 [†]	PTEN*†	RUNX1T1 [†]	TGFBR2 [†]	
CALR [†]	CRTC1 [†]	ETV6**	FYN [†]	LIG3	MTOR [†]	PDCD1LG2†	PTK2 [†]	RYR1	TMEM127*	

^{*} Represents genes in which likely pathogenic/pathogenic germline variants will be reported, in addition to somatic variants, as incidental findings

Regulatory Compliance Information: The NeXT Dx* test is a next-generation sequencing (NGS) based laboratory developed test (LDT) for cancer patients with solid tumors. The NeXT Dx* test is performed in the CLIA/CAP accredited Personalis* Clinical Laboratory. The NeXT Dx* test was developed and performance characteristics determined by the Personalis* Clinical Laboratory, which is qualified to perform high-complexity clinical testing. The NeXT Dx* test has not been cleared or approved by the FDA. The NeXT Dx* test reports on 401 genes.

1 Chakravarty D et al. *J Clin Oncol.* 2022 Apr 10;40(11):1231-1258. 2 Updated NCCN guidelines* for NSCLC (Source: nccn.org/professionals/physician_gls/pdf/nscl.pdf) 3 Michuda J et al. *Journal of Clinical Oncology* 40, no. 16_suppl (June 01, 2022) 3077. 4 Benayed R et al. *Clin Cancer Res* 2019, 25(15) 4712-22. 5 Internal data on file. 6 Nassar AH et al. *Cancer Cell.* 2022;40(10):1161-1172.e5. 7 Merino DM et al. *J Immunother Cancer*. 2020;8(1):e000147. 8 Vega DM et al. *Ann Oncol.* 2021;32(12):1626-1636.

Contact Us

[†] Represents fusion genes